Some examples of absolute continuity of measures in stochastic fluid dynamics
نویسنده
چکیده
A non linear Itô equation in a Hilbert space is studied by means of Girsanov theorem. We consider a non linearity of polynomial growth in suitable norms, including that of quadratic type which appears in the Kuramoto–Sivashinsky equation and in the Navier– Stokes equation. We prove that Girsanov theorem holds for the 1-dimensional stochastic Kuramoto–Sivashinsky equation and for a modification of the 2and 3-dimensional stochastic Navier–Stokes equation; this modification consists in substituting the Laplacian −∆ with (−∆), where α > d 2 + 1 (d = 2, 3). In this way, we prove existence and uniqueness of solutions for these stochastic equations. Moreover, the asymptotic behaviour for t → ∞ is characterized.
منابع مشابه
The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملSequence prediction for non-stationary processes
We address the problem of sequence prediction for nonstationary stochastic processes. In particular, given two measures on the set of one-way infinite sequences over a finite alphabet, consider the question whether one of the measures predicts the other. We find some conditions on local absolute continuity under which prediction is possible.
متن کاملAbsolute Continuity of Laws for Semilinear Stochastic Equations with Additive Noise
We present the Girsanov theorem for a non linear Itô equation in an infinite dimensional Hilbert space with a non linearity of polynomial growth and an infinite dimensional additive noise. We assume a condition weaker than Novikov one, as done by Mikulevicius and Rozovskii in the study of more general stochastic PDE’s. The equivalence of the laws of the linear equation and of the non linear equ...
متن کاملAbsolute continuity for some one-dimensional processes
We introduce an elementary method for proving the absolute continuity of the time marginals of one-dimensional processes. It is based on a comparison between the Fourier transform of such time marginals with those of the one-step Euler approximation of the underlying process. We obtain some absolute continuity results for stochastic differential equations with Hölder continuous coefficients. Fu...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کامل